u(2uv^2-3)du+(3u^2v^2-3u+4v)dv=0

Simple and best practice solution for u(2uv^2-3)du+(3u^2v^2-3u+4v)dv=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for u(2uv^2-3)du+(3u^2v^2-3u+4v)dv=0 equation:


Simplifying
u(2uv2 + -3) * du + (3u2v2 + -3u + 4v) * dv = 0

Reorder the terms:
u(-3 + 2uv2) * du + (3u2v2 + -3u + 4v) * dv = 0

Reorder the terms for easier multiplication:
u * du(-3 + 2uv2) + (3u2v2 + -3u + 4v) * dv = 0

Multiply u * du
du2(-3 + 2uv2) + (3u2v2 + -3u + 4v) * dv = 0
(-3 * du2 + 2uv2 * du2) + (3u2v2 + -3u + 4v) * dv = 0
(-3du2 + 2du3v2) + (3u2v2 + -3u + 4v) * dv = 0

Reorder the terms:
-3du2 + 2du3v2 + (-3u + 3u2v2 + 4v) * dv = 0

Reorder the terms for easier multiplication:
-3du2 + 2du3v2 + dv(-3u + 3u2v2 + 4v) = 0
-3du2 + 2du3v2 + (-3u * dv + 3u2v2 * dv + 4v * dv) = 0
-3du2 + 2du3v2 + (-3duv + 3du2v3 + 4dv2) = 0

Reorder the terms:
-3duv + -3du2 + 3du2v3 + 2du3v2 + 4dv2 = 0

Solving
-3duv + -3du2 + 3du2v3 + 2du3v2 + 4dv2 = 0

Solving for variable 'd'.

Move all terms containing d to the left, all other terms to the right.

Factor out the Greatest Common Factor (GCF), 'd'.
d(-3uv + -3u2 + 3u2v3 + 2u3v2 + 4v2) = 0

Subproblem 1

Set the factor 'd' equal to zero and attempt to solve: Simplifying d = 0 Solving d = 0 Move all terms containing d to the left, all other terms to the right. Simplifying d = 0

Subproblem 2

Set the factor '(-3uv + -3u2 + 3u2v3 + 2u3v2 + 4v2)' equal to zero and attempt to solve: Simplifying -3uv + -3u2 + 3u2v3 + 2u3v2 + 4v2 = 0 Solving -3uv + -3u2 + 3u2v3 + 2u3v2 + 4v2 = 0 Move all terms containing d to the left, all other terms to the right. Add '3uv' to each side of the equation. -3uv + -3u2 + 3u2v3 + 2u3v2 + 3uv + 4v2 = 0 + 3uv Reorder the terms: -3uv + 3uv + -3u2 + 3u2v3 + 2u3v2 + 4v2 = 0 + 3uv Combine like terms: -3uv + 3uv = 0 0 + -3u2 + 3u2v3 + 2u3v2 + 4v2 = 0 + 3uv -3u2 + 3u2v3 + 2u3v2 + 4v2 = 0 + 3uv Remove the zero: -3u2 + 3u2v3 + 2u3v2 + 4v2 = 3uv Add '3u2' to each side of the equation. -3u2 + 3u2v3 + 2u3v2 + 3u2 + 4v2 = 3uv + 3u2 Reorder the terms: -3u2 + 3u2 + 3u2v3 + 2u3v2 + 4v2 = 3uv + 3u2 Combine like terms: -3u2 + 3u2 = 0 0 + 3u2v3 + 2u3v2 + 4v2 = 3uv + 3u2 3u2v3 + 2u3v2 + 4v2 = 3uv + 3u2 Add '-3u2v3' to each side of the equation. 3u2v3 + 2u3v2 + -3u2v3 + 4v2 = 3uv + 3u2 + -3u2v3 Reorder the terms: 3u2v3 + -3u2v3 + 2u3v2 + 4v2 = 3uv + 3u2 + -3u2v3 Combine like terms: 3u2v3 + -3u2v3 = 0 0 + 2u3v2 + 4v2 = 3uv + 3u2 + -3u2v3 2u3v2 + 4v2 = 3uv + 3u2 + -3u2v3 Add '-2u3v2' to each side of the equation. 2u3v2 + -2u3v2 + 4v2 = 3uv + 3u2 + -3u2v3 + -2u3v2 Combine like terms: 2u3v2 + -2u3v2 = 0 0 + 4v2 = 3uv + 3u2 + -3u2v3 + -2u3v2 4v2 = 3uv + 3u2 + -3u2v3 + -2u3v2 Add '-4v2' to each side of the equation. 4v2 + -4v2 = 3uv + 3u2 + -3u2v3 + -2u3v2 + -4v2 Combine like terms: 4v2 + -4v2 = 0 0 = 3uv + 3u2 + -3u2v3 + -2u3v2 + -4v2 Simplifying 0 = 3uv + 3u2 + -3u2v3 + -2u3v2 + -4v2 The solution to this equation could not be determined. This subproblem is being ignored because a solution could not be determined.

Solution

d = {0}

See similar equations:

| y=(3x^2+5x-1)lnx | | y=log(6)(x+5)-3 | | w=-2y-4xfory | | -3u^2+12=0 | | L^2=h(2r-h) | | 7y^2+42y=0 | | 10x-11=-y | | y=(3x^2+5-1)lnx | | 9+8x=7x | | -32w=8 | | sec^2(2x)=1 | | P=2+3Qs | | sec^22x=1 | | secx=7 | | 1/5f-5=1 | | p=2c+x | | -31x+4y=-12 | | 4y+4y+6x-2x+x= | | sec(4x+10)=2 | | 20x^-4/27y^2/8x^-3/9y^3 | | 3y+10+2y-20=180 | | 12x+.5y=88 | | 3-5b=57 | | 4z-4=3z+9 | | -12x^2+15x=0 | | 0.973=0.9730 | | 2y-3=16 | | 2y-3+2y-3=32 | | 14+x=3x | | 3(-4+3)=14 | | 4a(a-13)=80 | | 31x+4y=-7 |

Equations solver categories